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Abstract

Historically the register allocator used in GCC
is a two phase allocator differentiating be-
tween local and global pseudo registers, which
doesn’t itself produce spill code, and therefore
is limited in code quality if spilling is needed.
This paper describes a new register allocator
for GCC based on graph coloring. After a short
overview of the concepts of them in general, in-
cluding some of the improvements (if used in
the implementation) we discuss the actual im-
plementation of the allocator including design
decisions and justification for them. This in-
cludes parts which aren’t explained in the usual
scientific papers but needed in a real world
multi-target allocator.

1 Introduction

While compiling a program often the need
arises to have a place wherein to store certain
values. One example is the storage for the re-
sult of calculating a common subexpression.
To actually make use of it in the later occu-
rance it must be remembered somewhere. One
possibility would be memory, but as the fastest
storage for most real machines are CPU reg-
isters, those are the more natural choice. But
the CPU registers (also hardware registers, or
hardregs) are limited to a comparatively (to the
amount of available memory) small set, which
makes it unlikely to actually find a hardreg

which doesn’t yet hold a value.

The traditional solution is the use of pseudo
registers (pseudoregs). While generating code
for the program (if for initial generation or
optimization doesn’t matter) the compiler as-
sumes there is an unlimited set of registers, and
if it needs a new one it simply creates it. Now
we obviously have to create another pass in
the compiler (which has to be fairly late in the
translating process), which creates a mapping
from pseudoregs to hardregs. It is called reg-
ister allocation for obvious reasons. This map-
ping must be injective if constrained to all oc-
curring set of pseudoregs which are live at the
same time (so that each hardreg only contains
the value for one pseudoreg at a time), which
means, that it doesn’t necessarily exist triv-
ially. In that case the register allocator needs
to change the intermediate code to make use
of storage in RAM to hold some of the pseudo
registers at least during a part of their life time,
which we call to spill a pseudoreg to RAM.

1.1 Current Situation in GCC

The traditional implementation inGCCconsists
of two passes:

• The first one allocates hardregs to pseu-
doregs which are only defined and used in
one basic block (called local-alloc). This
constraint makes the creation of the live
range for those pseudoregs trivial (it con-
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sists of the start and end point of it, which
corresponds to the first def and last use
in that block), limits the set of pseudo
regs to deal with to those which also
are used in that block, and leads to effi-
cient algorithms of creating the mapping
to hardregs.

• The second (global-alloc) deals with the
other pseudoregs, which are defined and
used in different basic blocks. Their live
range can span multiple blocks, and most
often can not be described simply by their
borders. This pass allocates hardregs to
those pseudos (it also maintains a conflict
graph), constrained to the already done
allocation for local pseudos. It also can
override decisions of local-alloc if it sees
fit.

Both of these passes don’t change the code.
Instead they simply produce a mapping (in
reg_renumber[] ) which simply doesn’t
contain a hardreg for a pseudo for which it
wasn’t able to find one. Then follows a pass
called reload , which uses this mapping to
change the instructions accordingly. Pseudos
without hardreg get a place on the stack, and
the instructions are modified to refer to their
memory location. While doing thisreload
also performs a validity check against con-
straints from the machine description. If this
check fails, the operands which were failing
are “reloaded” to make them valid (hence the
name of that pass). This for instance then also
includes creating explicit load and store in-
structions for those pseudos which have only
stack storage, if the insns which used them
can’t deal with memory operands. That is, the
process of spilling pseudos is implicit in forc-
ing instructions to be valid.

Those reload instructions themselves also need
register resources. If the reload was caused by
a stack reference, there is a high possibility that

it was storage for a pseudo which didn’t get
a hardreg, which further means that it’s also
probable that there isn’t any free hardreg. So
reload needs to deallocate some of the cur-
rently live pseudos in order to free up some
hardregs. For instance consider this instruc-
tion:

p1← p1 + p2

Supposep1 andp2 didn’t get a hardregs, and
the add instruction doesn’t accept memory
operands. Furthermore suppose that there are
no hardregs free during that instruction. Now
reload conceptually creates this instruction
internally

[sp + 4]← [sp + 4] + [sp + 8]

notices that it is invalid and creates reload insns
for the memory operands.sp here means ob-
viously the stack pointer and[adr] means the
memory at addressadr. The add instruction
here requires registers as operands, so we need
to use some, sayh1 and h2. The code now
looks conceptually like:

h1← [sp + 4]
h2← [sp + 8]
h1← h1 + h2
[sp + 4]← h1

So we need to deallocate all pseudos live dur-
ing this insn which formerly usedh1 or h2.
This in turn means that some pseudos now get
stack storage instead of a hardreg, therefore
the process of reload needs to be repeated un-
til it stabilizes (during which more and more
pseudos which initially got a hardreg could be
spilled again). In an optimizing compilation
reload actually calls back into global-alloc
right before repeating reloading, in the hope,
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that some of the newly spilled pseudos could
get a different hardreg instead of none at all.

That the emission of spill code is external to
the register allocator itself, and that it is done
on a per instruction basis leads to non-optimal
spill code in some situations. This (and cu-
riosity ;-) lead to the implementation of a more
traditional graph coloring register allocator for
GCC.

2 Graph Coloring Register Alloca-
tors

This section describes graph coloring register
allocators in general and introduces some im-
provements to the naive first versions.

2.1 A First Version

As explained above the problem to which we
seek a solution is to find a mapping from a
set of pseudoregs into a set of hardregs un-
der the constraint that pseudos simultaneously
live must not be mapped to the same hardreg.
Or more abstractly the constraint is, that cer-
tain pairs of pseudos may not get the same
hardreg (for whatever reasons). Such pseudos
are called to be in conflict. The set of con-
flicts forms a relation over the pseudos, which
is symmetric and irreflexive. The visualization
of a set together with such a relation is sim-
ply an undirected graph without loops. The
nodes represent the pseudoregs, the edges the
conflicts, the graph is called conflict graph. In
the context of register allocation we talk about
webs, instead of nodes.

Now the problem is to assign each node a
hardreg such that no neighbor of the node has
the same hardreg. This is exactly the for-
mulation of the graph coloring problem (with
hardregs being our colors), which explains the
name for the class of register allocators work-

ing under this model.

Note that pseudos not only conflict with other
pseudos, but also with hardregs. The reasons
can be that due to machine constraints some
hardregs are already used in the intermediate
representation before register allocation. Or
some pseudos only are permitted a certain set
of hardregs (which can be modeled by making
them conflict with the inverse set). To make
this fit into our model we also include a node
for each hardreg into the graph, which already
are assigned a color; they all conflict with each
other.

Now it’s well known that graph coloring is NP-
complete, so a full solution isn’t feasible for a
compiler. We have to implement approximate
solutions with better runtime behavior.

The first thing is to make use of Kempe’s obser-
vation (see [Kempe]), namely that nodes with
fewer thanN neighbors (whereN is the num-
ber of available colors) can be trivially col-
ored. We can remove such nodes from consid-
eration, which in turn might make other nodes
have fewer thanN neighbors. The removed
nodes are remembered on a stack. The pro-
cess of pruning the graph in this way is called
simplify . If we managed to empty the whole
graph in this way we can take one node at a
time from the top of stack, put it back into the
graph and trivially color it (it’s guaranteed to
have less thanN neighbors).

There are two reasons why simplifying the
graph might not completely empty it. First
it’s only a heuristic, and second the graph it-
self might not be colorable withN colors at
all from the beginning. Either way we might
end up with an intermediate graph in which all
nodes haveN or more neighbors (those nodes
are called constrained).

To make it simplify-able again we have to
change portions of the conflict graph. This is



154 • GCC Developers Summit

build

costs

simplify

coloring

spill code

anything spilled

Figure 1: Flow graph of register allocators

done by choosing one of the nodes, the one
with the lowest spill cost, remembering it for
spilling, and remove it from the graph, in much
the same way as if it were trivially colorable.
Somewhen this makes other nodes simplify-
able again, and in this manner we continue un-
til the graph is empty. If there were spilled
node we now add spill code, and repeat the
whole allocation process. The next time the
conflict graph will be simpler, as all spilled
nodes are now split into several nodes, whose
conflicts is only a subset of the original ones.

This leads to an allocator like in Figure 1. The
build phase analyzes the intermediate repre-
sentation of the program and creates the con-
flict graph. For choosing which nodes to spill
if the need arises, we have to associate a cost
for spilling to each node, so we can select the
cheapest. Those are calculated bycosts. The
spill code phase is only entered ifsimplify
had to remove some nodes by marking them
as spilled. Otherwise all nodes were simplify-
able, andcoloring is entered, which pops the
stack of simplified nodes and colors each one
individually. The simplest (and fasted) mean
to add spill code is to spill at each reference to
a spilled node. Before each use insert a load
from, and after each def1 insert a store to the
memory place allocated for the spilled pseudo.
See [Cha81], although this includes also a coa-

1definition

lescing phase.

2.2 Improvements

There are various improvements to the above
simple allocator. Namely in how it deals with
copy instructions, in the process of coloring the
graph itself, and how spill code is emitted. I’ll
only describe those which are actually imple-
mented inGCC.

After initially building the conflict graph, ad-
dition of code often changes it only locally.
Therefore it is not necessary to completely re-
build the graph for each colorization round. In-
stead werebuild the conflict graph incremen-
tally, which is much faster, especially if only
few pseudos were spilled.

Coloring and Copies

Copy instructions ensure that the two involved
pseudo regs get the same value. Hence they are
not a cause for a conflict between those two.
To the contrary: if they don’t conflict because
of other reasons, it even is worthwhile to as-
sign them the same hardreg, as by doing that
the copy instruction itself becomes redundant.
For instance in a situation like this:

p1← ...
p2← p1

p3← p4 + p1
p5← p4 + p2

Suppose thatp4 is defined earlier. Normally
p1, p2, p3 and p4 all conflict (exceptp3 and
p1). But the definition ofp2 is a copy from
p1, and there are no other defines for it. Sop1
andp2 don’t conflict. Furthermore if we could
ensure that both get the same color,p4 would
only conflict with two instead of three nodes.
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Figure 2: Diamond graph

aggressive coalescing: After building the con-
flict graph, but before measuring the costs we
first try to merge all nodes for pseudos which
are involved in one move. Merging them en-
sures, that they will get the same color. It can
only be done if the nodes do not conflict. The
resulting conflicts of the merged node are ob-
viously the union of the individual conflicts.
As merging nodes may prevent other nodes
from being conflict free, nodes associated by
the most costly moves should be handled first.

To see a problem in the coloring process look
at the graph in Figure 2 and suppose there
are only two colors. Here thesimplify phase
doesn’t find any node having fewer thanN
neighbors, and ergo selects one for spilling (the
rest is then simplified). Now there is definitely
spill code added. But there’s a trivial color-
ing, namely when nodesa andd, resp. b and
c get the same color. But we can’t know if
this holds, until we actually color the nodes,
which is only begun when we anyway know,
that we succeeded. That is, the decision to spill
a node is done too early, which leads us to (see
[Briggs94]):

optimistic coloring: Instead of marking a
node for spilling insimplify we simply also put
such nodes on the stack (they are conceptually
potentially spilled). No matter if there are such
nodes or not, we go to thecoloring phase. This
one works as usual for the stack of nodes. If it
colors a simplified node it still is guaranteed to
get a color. And if it encounters a potentially

spilled node it also tries to find a free color. If
it succeeds, good, if not, only then is it actually
marked for spilling. It often succeeds, namely
in the case, where all the (≥ N ) neighbors do
not need all theN colors at the same time (i.e.
some of them are colored equal).

The above mentioned coalescing, which is
called aggressive because it tries to coalesce all
copies, sometimes results in a much more con-
strained graph than without coalescing. When
nodes are merged whose conflicts are nearly
disjoint the resulting node will have much
more conflict than the nodes individually. Pos-
sibly more thanN , which makes it a potential
spill candidate instead of a trivially colorable
one. It can even make it definitely spill, where
without coalescing the individual nodes would
not have been spilled (at the expense of leaving
a copy instruction around). A solution for this
is (see also [GA96]):

iterated coalescing: Two pseudo nodes are
only coalesced, if the resulting set of conflicts
is smaller thanN elements (this is conservative
coalescing), and a pseudo to a hardreg node is
only coalesced if all conflicts of the pseudo will
be colored, or conflict already with the hardreg.
This ensures that the graph doesn’t become
more constrained due to coalescing than it was.
To not miss to coalesce too many copies coa-
lescing is tried repeatedly between simplifying
and choosing potential spill candidates. There
are quite many work lists for nodes and moves,
and the exact circumstances when they change
their state are a bit involved, so interested read-
ers are referred to the paper, as this is not any-
more the method of choice in my implementa-
tion.

The method of iterated coalescing still is a bit
too conservative. It effectively ensures that the
graph remains at least as colorable after coa-
lescing, but misses the positive effect which
coalescing can sometimes have one coalescing.
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Figure 3: Diamond graph with b and c con-
nected by a move

For instance referring to figure 3(a) if nodesb
and c were coalesced the resulting graph (in
3(b)) is trivially colorable without any poten-
tial spill. Butb andc wouldn’t be coalesced un-
der any conservative scheme (whenN is two).
In general it holds, that if two nodes are co-
alesced, those nodes which conflict with both
have one conflict less after merging. This is
the positive impact.

The problem that iterated coalescing (and con-
servative coalescing) are trying to solve is
to prohibit coalesced nodes from becoming
spilled. They do this by limiting merging be-
fore the fact, but that isn’t necessary. It would
be better to only act if the danger of spilling a
merged node has become real (see [Park]):

optimistic coalescing: All moves are aggres-
sively coalesced beforecosts. Then the normal
simplify andcoloring phases are run. When
a node which is a merged node now defi-
nitely gets no color (i.e. would be spilled) we
first split the merged nodes into its ingredients
again, and try to color them individually. All
parts which still need spilling are spilled. From
the parts which get a color only the most costly
will be colored right away, the other parts are
put under the stack (so they are tried to be col-
ored after all the other nodes), as the building
of the color stack expected to only color one
node. This splitting of the merge is simply an
undo of the merge operation, i.e. all conflicts

again point to their initial nodes. Conceptu-
ally instead of spilling the node we actually
have split it. But compared to general splitting
we know already good split points (namely the
original copy instructions) and don’t even need
to insert them.

The example of figure 3 shows, that it some-
times is good for colorability if nodes are
merged. It isn’t necessary that there actually
is a copy instruction. This idea is used by:

extended coalescing: After aggressive coa-
lescing we also try to merge other nodes if it
looks feasible. The candidate pairs are those,
whose one pseudoreg is target and the other is
source in the same instruction, and which do
not conflict. Being mentioned in the same in-
struction makes it probable that the two sets of
conflicts have many elements in common, so
the merged node will not have that many more
conflicts. If we then are unlucky and can’t
color it we unmerge the nodes again and go on.

Shrinking the Spilled Set

One of the parameters which influences the
outcome of our graph colorizer in any way is
the heuristic for choosing the next potential
spill candidate among a set of remaining nodes
(which are all constrained) (the other parame-
ter is which color to choose for a node among
those which are still free). The heuristic best
for one graph may be bad for another one.

To become a bit more independent from that
heuristic Bernstein et.al. ([Bernstein]) pro-
posed abest-of-three strategy. For a set of
heuristics the graph is colored each time from
the beginning with one heuristic, and the over-
all cost of all spilled nodes is measured. Then
finally that colorization with the lowest such
cost will be used.

The other parameter is the choice of color
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among the free ones for a certain node. The
usual choices are first-fit and rotating. An-
other more complex one isbiased coloring
([Briggs92]): the number of choices depends
on how many colors are used by the neighbors,
so one goal for coloring a node would be to
not unnecessarily enlarge this set for the still
uncolored neighbors of it. For that we look at
the colored neighbors of all out yet uncolored
neighbors. Those colors are anyway already
unavailable to them, so would be a good choice
for us.

Cheap Spill Code

The improvements up to now had the goal to
make the set of spilled nodes as small as possi-
ble. The next few items deal with emitting the
cheapest spill code once this set is fixed after
one colorization round.

First notice that some pseudo regs contain con-
stants (also values loaded from argument stack
slots count as constants for this purpose), or
values which are provably constant over the
lifetime of that pseudo. This make spilling
them easy ([Cha81, Briggs92, Briggs94]):

rematerialization: Such pseudos are called
rematerializable as the expression calculating
their value at each point during their lifetime
is known, and hence, once they are overwritten
could easily be “rematerialized.” To spill such
nodes instead of inserting load from stack in-
structions, one inserts the rematerialization in-
structions (depending on the value, for instance
load with a constant). Stores are not needed for
these nodes (as we know their value). Remate-
rializing a node is worthy if it’s cheaper to cre-
ate these value-load instructions than the mem-
loads and mem-stores. More advanced meth-
ods of rematerialization also detect expressions
over other pseudoregs, like in this example:

p3← p1 + p2
... code not changingp1 or p2

p4← p1 + p3
p4← p4 + p2

If p3 is spilled andp1 andp2 are not, and an
add instruction on registers is cheaper than a
load from memory, then we can instead recom-
pute the value ofp3 before its use. If we op-
erate on SSA form the required analyzation to
prove thatp1 andp2 are not changed during the
lifetime of p3 are relatively easy. Before actu-
ally doing such rematerialization it needs also
to be ensured that the lifetime of the operands
are not extended, i.e. that all operands are live
during the lifetime of the spilled node.

Now we look at this code:

code definingp1 andp2
use← p1
use← p2
use← p1

no further use ofp2

Suppose thatp1 is spilled and before the first
use up to its definition are no instruction in
which a pseudoreg dies. Naively there would
be a load instruction added before each use of
p1. But adding it before the first use doesn’t
help colorability at all. As there are no deaths
between that use and the def the number of
used hardregs remains constant there. Insert-
ing a load is not going to help colorability of
p1.

Therefore we onlyspill at deaths, we only in-
sert loads if we encounter a death of another
non-spilled pseudo. For inserting loads we
walk backwards the instruction stream, note
which nodes need a load, and emit all loads
as soon as we reach a def (or the basic block
border).

Of course we don’t emit the loads directly af-
ter the death, but instead right before the in-
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struction which most recently used the spilled
pseudos. Otherwise we could end up with code
like:

p1← p1 + p2
p3← [sp + 4]
p4← [sp + 8]
p5← [sp + 12]
p1← p1 + p3
p1← p1 + p4
p1← p1 + p5

p3, p4 and p5 were spilled, andp2 died at
the first shown instruction, where we also in-
serted all loads together. So the register pres-
sure at the second add instruction is still four.
The correct position of the load is right before
their uses, but actually emitting them is only
triggered by encountering a death, which then
leads to this code:

p1← p1 + p2
p3← [sp + 4]
p1← p1 + p3
p4← [sp + 8]
p1← p1 + p4
p5← [sp + 12]
p1← p1 + p5

The next improvement isinterference region
spilling ([Bergner]): if we don’t find a color for
a node (i.e. it’s spilled) we up to now totally re-
moved that node from the graph (by placing it
into memory everywhere except for very small
ranges around the instructions which needed
it). But we also could simply assign any
hardreg to this node, and onlyremove the edges
to any now really conflicting neighbor.

Practically this is done by choosing a color for
all spilled nodes. While emitting the spill loads
we also track all hardregs which are currently
in use. Remember that we walk backwards.
If we encounter a use of a spilled web whose

1 2
p1 <−− ...
p2 <−− ...
...
... <−− p2

p3 <−− ...
p2 <−− ...
p1 <−− p2+p3

p3 <−− p1

p4 <−− p1+p2+p3
3

Figure 4: Example for interference region
spilling

p1 <−− ...
p2 <−− ...
...
... <−− p2

p3 <−− ...
p2 <−− ...

1 2

p1 <−− p2+p3

3

p3 <−− p1

p2 <−− [sp+4]
p4 <−− p1+p2+p3

Figure 5: Example for interference region
spilling (after inserting loads)

color is in use, we deal with it like described
above (i.e. waiting for a death and then insert-
ing a load before the using instruction). If on
the other hand its color is currentlynot in use
we mark it specially as potentially needing a
load. If we go further up and notice a defi-
nition for a node marked in this way, and its
color didn’t become used meanwhile, we sim-
ply remove that mark (it’s not live before the
definition anyway). If we encounter the use
of another (non-spilled) node we set its color
as used. If we currently have some potential
load candidates, whose color now is used, we
emit loads for those. This process effectively
only adds spill instructions if there is danger
that two nodes with the same color are live at
the same time.

To better see the effect look at figure 4 for
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an example situation.p1, p2 andp3 all con-
flict, and we only have two hardregs.p1 got
hardregs 0,p3 hardreg 1 andp2 was spilled.
We choose hardreg 1 for it. We begin with the
use in block 3, both colors are needed (p1 and
p3 are used), so we need to insert a load (we
reached the block border). Then we analyze
block 1. Initially hardreg 1 is not used (p3 is
not live), so we only markp2 as potentially
needing a load. While we go upward hardreg
1 doesn’t become used, but we encounter a def
of p2. So we simply forget about it. In block
2 hardreg 1 is used during lifetime ofp2, but
we don’t encounter a death until the def, so no
load is added here. We end up with the code in
figure 5.

If we had spilled by the former method we also
had inserted a load into block 1 (if there is any
death in the “. . . ”). With interference region
spilling we need to insert stores for each defi-
nition which reaches one of the uses for which
a load was added. In the above case after both
defs.

To further reduce cost of spill code we also do
web splitting ([Mass]). If we can’t find a color
for a web, i.e. we are going to split it, we first
try if we can split this web around other webs,
or other webs around that one, in a cheaper way
than splitting. Look at this code:

p1← ...
p2← ...

... code1 without usingp1
...← p2

... code2 without usingp1
...← p2
... code3
...← p1

Supposep2 is spilled (there are other uses ofp1
which makes it more costly to spillp1 thanp2)
andp1 already colored. Now instead of doing
that, we notice that during the lifetime ofp2

there are no references top1 (which requires
something like a containment graph, which can
also be used to implement the conflict graph).
This makes it possible to completely splitp1
aroundp2, so that it isn’t anymore live dur-
ing p2. This even guarantees, that the number
of conflicts for p2 reduces, something which
normal spilling can’t do generally. The result
would then look like:

p1← ...
[sp + 4]← p1

p2← ...
... code1 and code2

...← p2
p1← [sp + 4]

... code3

...← p1

Note that the load ofp1 is not for the later use
of it (like in spilling), but rather because the
lifetime of p2 ended. That is, generally stores
for split webs are created before each def of
webs around which they are split. Loads for
them are created right after each death of the
split around webs. A web can also die over a
certain edge, not only explicitely at a use.

One minor improvement isspill coalescing
([GLnew]): It can happen, that there are un-
coalesced copy instructions remaining, where
both pseudos of the copy insn are spilled, but
do not conflict. This would create a memory-
memory move which often is less than desir-
able. Therefore we can run another aggressive
coalescing pass for just the spilled webs in or-
der to remove such copies. This also reduces
the needed frame size a bit.

Another situation which sometimes arises is
helped byspill propagation: There are three
pseudos,p1 connected top2 by a copy andp2
connected top3 by a copy. They don’t conflict,
like here:
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Figure 6: Flow graph of the final allocator

... with def ofp1
p2← p1

...
p3← p2

... with use ofp3

Now suppose, thatp1 andp3 were spilled, but
p2 colored. It might be better to also spillp2
to memory, if then the two copy instructions
can be removed by coalescing all three pseudos
together. In a sense this “propagates” the spill
to a colored pseudo (which initially is counter
intuitive).

The last improvement here isspill coloring:
After the set of spilled webs is finalized a col-
oring pass is run on the subgraph induced by
the spilled nodes, with an unlimited number of
colors (i.e. when a node doesn’t get a color, the
maximum number is simply incremented and it
gets the new color). Then a stack slot is allo-
cated for each such color, instead of for each
spilled node. This greatly reduces the needed
stack frame size for spilling.

The final flow graph of the register allocator
can be seen in figure 6.

3 Taking it to GCC

Now we look how to fit all the above descrip-
tions into the framework ofGCC. The definite

reference is of course the source code (in files
ra*.c, ra.h and pre-reload.* ), and
to not obsolete the paper as soon as some parts
of the allocator are changed we don’t follow
the source too closely here.

3.1 Constraints Imposed byGCC

Classes and Constraints

GCCnot only targets an ideal machine with
a set of N completely equivalent registers,
whose instruction set is totally orthogonal,
which doesn’t expect certain conditions from
the operands of instructions, but instead it tar-
gets real machines with sometimes awkward
constraints. The ones which influence the reg-
ister allocator are described here.

GCC has the concept ofregister classes:
The set of all hardware registers for a ma-
chine is divided into named smaller set of
registers (ALL_REGS for the whole set and
NONE_REGSfor the empty set are defined by
all machines). They are not disjoint. The regis-
ter operands of instructions can specify which
hard registers they accept by mentioning such
register classes.

The instruction templates for a machine can
specify constraints and can consist of more
than one alternative per template. Each of the
instructions in the intermediate representation
match one template in the machine description.
For register allocation purposes each template
has many alternatives, where each of them can
have a different set of requirements on the
operands. For instance it’s possible that the
generic “add” template has two alternatives,
one accepting registers of classCLASS1and
the other accepting registers of classCLASS2.

The are also other types of constraints, for in-
stance to limit the range of constant operands
(so as to fit into an immediate field in the
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instruction), or matching constraints, which
force one operand to be equal to another. In
that way two address machines can be imple-
mented. For instance the generic “add” pat-
tern has three operands (one target, and two
sources), and if the machine has only an in-
struction which adds a register to the other
source register, this can be specified by con-
straining the first source operand to be the same
as the target operand.

Such matching constraints can easily be made
valid by a pass before register allocation,
by adding copy instructions for the matching
operands (possibly using new pseudo regis-
ters). Similar with constraints which don’t af-
fect register operands (constants e.g.).

Additionally some hardregs are not available
for register allocation at all, as they have spe-
cial uses (e.g. the static chain pointer for nested
functions, or the PIC register on some ma-
chines).

The machine descriptions also have the pos-
sibility to limit the set of hardregs for
a pseudoreg just based on its mode (the
HARD_REGNO_MODE_OKmacro).

Subregs and Wide Regs

Another possibility inGCCis the use ofsub-
regs. Subregs are references to a part of a reg-
ister (or other values, but in those we aren’t in-
terested). This makes such code possible:

p1 : [SI + 0]← p2
p1 : [SI + 4]← p3 + p2

p4← p1 + p5

Here the notationp1 : [SI + x] means the sub-
reg ofp1 of modeSImode on byte offsetx in-
sidep1. Suppose thatp1 is aDImode pseudo.
The code does definep1 piecewise (first the

lower half, then the high half), and then uses
thep1 in its whole. The interpretation of sub-
regs is bitwise.

A special kind of subregs areparadoxical sub-
regs. Those are subregs in a wider mode than
the inside register provides. I.e. it accesses bits
which aren’t provided (or are undefined).

Furthermore not all machines allow subregs to
be taken from all hardware registers. For in-
stance on Alpha the floating point register can
hold 64-bit integers. But it’s not possible to
access the low or high 32 bit of that value by
simply looking at the low or high 32 bit of the
register. Therefore some registers are not al-
lowed for references which involve a subreg
reference.

And finally there is the notion ofmulti word
hardregs. Those are references to hardregs in
a mode which is wider than this hardreg. Such
references implicitly use the next few adjacent
hardregs (as much as needed). For instance a
DImode reference to hardreg 0 (which for this
example shall be SImode maximum) also uses
hardreg 1.

3.2 Meaning for the Allocator

The constraints on registers result in a set of al-
lowed hardregs for each register reference. The
set of allowed hardregs for a whole web con-
sists of the intersection of the sets for all indi-
vidual references making up that web.

It’s possible that one web consists of references
with conflicting constraints, i.e. with disjoint
allowed hardregs. For instance a pseudo reg-
ister used in integer (e.g. bitwise logic) and
floating point context (e.g. addition with a float
constant). Such a web would have an empty set
of possible hardregs. A possible solution is to
either fake this set (by ignoring the conflicting
reference), and thereby leave the work of fix-
ing up the instructions toreload , or to spill
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away the conflicting reference while building
the web.

As probably already became clear, each
web has its own set of allowed hardregs
(in the usable_regs member ofstruct
web). Most often it will not contain all
hardregs. This has implications for the pred-
icate is-trivially-colorable used in
thesimplify phase. The numberN is meaning-
less here. Instead a web is trivially colorable
if the weight of its conflicts is less than the
number of registers inusable_regs . For
that to work there may only be conflict edges
between webs whose possible hardregs have a
non empty intersection. This of course makes
sense, as if it were empty the two webs any-
way couldn’t get the same color, so conflicts
between them are pointless. This also reduces
the necessary conflict edges.

One difficulty are multi-word pseudos. The
webs have anadd_hardregs member
which contains the number of additionally re-
quired hardregs (at maximum). To generally
ensure that there is a hole of two consecu-
tive hardregs in a block ofN , it would be re-
quired that there are less thanN/2 neighbors
(which itself wouldn’t be allowed to use mul-
tiple regs). If we had exactlyN/2 conflicts all
even colors could be taken, leaving no block of
size two. But this is clearly an overly conser-
vative heuristic.

Instead theadd_hardregs member simply
is counted as another conflict. So the actual
predicate is:

triviali := |usablei| > addi+
∑

n∈neighborsi

1+addn

This is an optimistic predicate, which means
that even webs which were simplified could
not get a color (only when they are multi word
regs).

The possibility of subregs means for us, that
a pseudo may sometimes be live only par-

tially (this is a cause of much of the complex-
ity in the actual implementation). This can
also result in partial conflicts, i.e. something
like “the lower 32bit ofp1 conflicts withp2.”
Such conflicts are useful to create a good al-
location for multi word pseudos, as now par-
tial overlap is allowed (so that for instance
only three hardregs are needed for two pseu-
dos each needing two regs). Partial webs are
instances of the normalstruct web but they
have theirparent_web member set. The
subreg_next members form a linked list
between the whole web and its parts.

3.3 The Conflict Graph

The most important structure in a graph color-
ing register allocator is obviously the conflict
graph but up to now we haven’t talked about it,
because conceptually it’s not very interesting
in the context of describing the general meth-
ods of register allocation.

It is implemented inGCCby these structures:

struct conflict_link
{

struct conflict_link *next;
struct web *t;
struct sub_conflict *sub;

};
struct sub_conflict
{

struct sub_conflict *next;
struct web *s;
struct web *t;

};
struct web
{

...
struct conflict_link *conflict_list;
...

};
sbitmap igraph;
sbitmap sup_igraph;

That is, each web has a linked list of its
conflicts. Only whole webs have this list,
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subwebs (those corresponding to subregs)
don’t. The targets of those conflicts (in
conflict_link.t ) are also whole webs.
This allows fast iteration over all conflicts
without having to care for the details of sub-
conflicts. If between weba and b only sub-
conflicts occur, then those are remembered in
a second linked list, which hangs off of the
edge betweena and b. I.e. there is one
conflict_link instance inas conflict list,
with .t beingb, which has its.sub member
pointing to a list of sub-conflicts which note
which parts ofa resp. b exactly are conflict-
ing (.s points to a part ofa or a itself, .t to
b or a part of it). The bitmapsigraph and
sup_igraph are used to test two webs for
conflicts. igraph contains the exact conflicts
between parts,sup_igraph lists for whole
webs, if they them-self or any parts of them
conflict. This is a bit suboptimal. If we had
a mean to go from the indexes of two webs to
the correspondingconflict_link instance
for their connecting edge (a hash table for in-
stance) we wouldn’t needsup_igraph . If
one considers coalescing (which also involved
merging conflicts, which we must be able to
break up again) such a mean is not totally triv-
ially implemented, though.

Actually building the conflict graph is im-
plemented in ra-build.c . We use an
incremental graph builder which at the same
time does an liveness analysis, builds webs
and creates (preliminary) conflicts (it’s in
build_web_parts_and_conflicts()
and sub-functions). It works use by use. Per
use it goes backward the instruction stream
(following all edges backward), until it reaches
a def for the register we currently analyze. On
that way it remembers the defs encountered
for the current use (from those the real conflict
lists are build later), connects uses and defs of
the same reg as that use in a UNION-FIND
structure, and fills some house keeping infor-
mation (for instance if an edge is crossed the

use is remembered as live over it).

The currently analyzed use is placed into an
instance ofstruct curr_use. Partial live-
ness is supported by having a bit field (the
.undefined member) where each bit corre-
sponds to one byte of the use. A bit is set if
the byte is still undefined. When a def is en-
countered the bits which correspond to that def
are cleared. If that results in no more left bits
we have reached the first def which (partially)
defines the use on that path. The set bits also
represent the part of the use, which is still live.
This is used for creating sub conflicts. Partial
liveness could also be represented by a set of
ranges, which bits are live. A variation of that
scheme is used in [Bitwidth], although they
only split the bits into three sections (a set of
leading and trailing dead bits, and a section of
middle bits, which are live). To correctly rep-
resent live information under this scheme we
would need to treat some subreg references as
read-modify-write, like it’s done in the conser-
vative data flow pass inGCC. This makes it less
attractive again.

The advantage of such a builder compared to a
more traditional bit-set based liveness analyzer
is the simplicity (we deal with only one use at
a time), that it’s possible to precisely track par-
tial liveness for subregs (something which is
not that easily done with bitmaps) and that we
can easily rebuild the graph for only those uses,
which need it. After spilling was done not the
whole graph needs to be rebuilt, but only those
webs, which were changed, and their former
neighbors. A bit-set based analyzer also needs
to iterate until the solution stabilizes. This is
not needed here. And that we can note con-
flicts alreadywhile still building webs also is
attractive.

With some optimizations (like skipping whole
basic blocks if the current pseudo isn’t men-
tioned in them) the part of building webs and
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preliminary conflicts actually was nearly as
fast as the traditional bitmap based liveness an-
alyzer inGCC.

There is a pass necessary which actually cre-
ates thestruct web instances and the con-
flict lists from the UNION-FIND structure
and the preliminary conflicts (which are all
based on the defs and uses, for each of whom
an instance ofstruct web_part is cre-
ated. This is done inmake_webs() and sub-
functions.

The rest of initializing the webs is also in
ra-build.c . Among it are determining the
spill cost of a web, if it’s rematerializable, col-
lecting the copy instructions and so on. It prob-
ably had better been namedra-analyze.c
;-)

3.4 Putting it Together

The implementation of the register allocator
consists of different files which roughly reflect
the structure described in section 2.

Besidesra-build.c which builds not only
the conflict graph but also most of the other
information about webs and program structure
(as described above), there is

ra-colorize.c
which is all about changing (like in coalesc-
ing) and coloring the conflict graph, including
optimizations which shorten the set of spilled
webs. This includes the work list management.
The structure is fairly close to the allocators in
the published papers, except for three things:

• selectablealgorithm: Most of the im-
provements in the coloring process are se-
lectable at runtime. For instance it can
be switched between optimistic or iterated
coalescing, or biased coloring can be acti-
vated or not.

a

bc

d

a

b

d

c bc

ad

(a) (b) (c)

Figure 7: Coalescing of nodes

• hard trying to color certain webs: due
to irregularities in connection with multi-
word pseudos, and with spill temporaries,
or other generally difficult webs (which
includes those during whose lifetime no
death occurs) it’s possible that there is
no color free for a web which absolutely
must have a color (this happens extremely
seldom and only on register constrained
machines). In that situation it is tried to
temporarily mark one of its already col-
ored neighbors as spilled, and try again to
find a color. This is done until a color is
found or no more colored neighbors are
left. After that those temporarily spilled
neighbors are tried to be colored again. If
they don’t get a color they are left in the
spilled state.

• recoloring spills: after the graph is col-
orized and the set of spilled webs is de-
termined, each spilled web is tried to be
recolored. For this the cost for the spilled
web getting a color is measured (it con-
sists of the sum of spill-costs of all neigh-
bors overlapping that color). If the small-
est cost is smaller than the web spill cost,
this recoloring is done, and the neighbors
which now conflict are spilled instead.
This can reduce the overall spill cost of
the graph.

One particularly ugly problem is how to imple-
ment splitting up merged nodes for optimistic
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coalescing. Refer to figure 7. Starting with
graph (a) first nodesb andc are merged, then
nodesa andd. The final graph has only one
edge left which was not in the original graph.
Now suppose we want to split nodebc. We may
not yet remove edgeb − ad, because also the
original b − d edge was mapped to it. Only
when we also split nodead we remove it, and
then we alsohaveto remove it in order to not
constrain the graph more than necessary.

From that description it becomes clear that the
only real solution would be to add reference
counters to edges. But that would bloat the size
of each edge. That’s not desirable as there are
potentially very many edges in a conflict graph.
The reference counter would also only be ever
needed for edges which weren’t in the original
graph, as only those are candidate for removal.

Currently we don’t refcount2 the edges, but
instead “repair” the graph after having split
nodes. First we remove all edges incident to
split nodes which weren’t in the original graph
(we have an easy way to test that as each node
has a list of those), and then we look for other
coalesced nodes that would have added that
edge also (in which case we reinsert it into
the graph). This process is relatively slow,
so we will move to a refcounting implemen-
tation eventually (the work has already started
for that).

ra-rewrite.c
is responsible for actually changing the pro-
gram to include any spill code. Its behav-
ior is also selectable at runtime, and it can
use spill-everywhere (separately for uses and
defs), traditional spill at deaths or spill at inter-
ference regions. It also implements the code
for splitting webs around other webs which
can theoretically be used with together with
all spill methods. Unfortunately interference
region spilling and web splitting use separate

2count the number of references of ... ;-)

data structures and can’t currently be used to-
gether. They will be usable together once the
implementation is done.

Besides the improvements from section 2 for
reducing the number of inserted loads dur-
ing spilling, the actual implementation also
has a naïve implementation of optimizing dead
stores. It goes backward the insn stream re-
membering to which locations it wrote to. For
each encountered use we delete all locations
which overlap that use from the list. If it is
about to insert a store it first checks if that lo-
cation is still in the list, and omits the store if it
is.

One thing which should be mentioned is that
we defer the creation of real stack slots until
the very end of allocation. Until then we create
new pseudo regs to hold the value of spilled (or
split) webs. These pseudos are not to be con-
fused with normal pseudo regs, as they concep-
tually represent stack slots or real registers. We
do this for two reasons:

• We want to be able to track also liveness
for stack slots (in order to merge or color
them), and sometimes we are able to actu-
ally give them back a hard register. This
usually happens when multiple rounds of
spilling were needed and a spill method
which produces long living temporaries
was used.

In that case it happens that first a web is
spilled which then didn’t relax the situa-
tion as much as hoped, so other webs are
also spilled. This in turn can make the
spilling of the first web unnecessary, and
by creating a web also for stack slots we
are able to make use of that. Thosestack-
pseudosor stack-websas we call them in
the allocator are handled specially in a
number of situations. For instance they
are colored after all normal webs. If they
don’t get a color, they are not spilled again
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(this is implemented by coloring them
with an impossible color). This also needs
changes in the functions which check va-
lidity of constraint, so that stack pseudos
are accepted for memory references and
for registers.

Some machines have requirements on the
addresses they accept, for instance a lim-
ited range of offsets from a base regis-
ters. Emitting an address reference on
them can possibly lead to emitting more
than one instruction, which actually con-
structs the address by doing arithmetics on
some new pseudo registers. On those ma-
chines we can’t defer creating stack slots
completely, as creating new pseudo regs
means we must redo our register alloca-
tion. For those machines we actually emit
real stack references for all the stack-webs
which did not get a color. I.e. we defer
stack slots only by one round, not until the
very end.

• The other reason is stack slot coloring as
described in Section 2 (as “spill color-
ing”). When we have webs for all stack
slots (i.e. for the stack pseudos) includ-
ing all conflicts, we can color them easily
and reduce the frame size. I.e. we allo-
cate stack space not for each stack pseudo,
but instead only for each color needed for
them.

The rewriting phase is also responsible for re-
setting the conflict graph and associated infor-
mation into a state that is usable as a starting
point for the next round. For instance all coa-
lescing has to be undone, and the edges added
for that have to be removed (asall coalescing
is undone this is considerable easier than what
was described above). We also need to mark
which webs have to be rebuilt (namely those
which changed their layout).

The file ra-debug.c contains some useful

functions for debugging the allocator including
a new format of outputting the immediate for-
mat (RTL) ofGCC, which is much more com-
pact and easier to read (although it lacks some
information) than the traditional lisp like for-
mat. It should somewhen be extended to be
usable also for the other passes inGCC, and be
merged with the format of the scheduler debug
dumps (which uses something similar).

To actually scan the instruction stream for
all (interesting) references to registers we use
functions from df.c . For each such ref-
erence we build one instance ofstruct
web_part which creates an indirection in one
of the highly used data structures, so it might
somewhen be advisable to do this on our own.

The last big part in the allocator is imple-
mented in
pre-reload.c .
As written at the very begin thereloadpass is
responsible for actually emitting spill code in
the old register allocator, and for fixing up any
invalid instructions (those whose operands do
not match their constraints). The spilling code
we do add ourself now, but we could still pro-
duce invalid instructions (for instance operands
don’t match where they have to, or an operand
is in a register which isn’t in the required class).
This would make reload emit fixup code. As
this code is emitted locally without having the
big picture of a conflict graph or similar means
this often results in spilling some other pseudo
registers, and reloads method for adding spill
code is undesirable.

Therefore the goal must be to never leave the
register allocator with possibly invalid instruc-
tions. One requirement is to allocate pseudos
to a register which is accepted by all the in-
structions that reference it. To that end pre-
reload collects the possible register classes for
each register reference. Another requirement
is to not violate matching constraints, which
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is done by pre-reload emitting copy instruc-
tions before or after the invalid instruction, and
change the operands of it to actually match. It
also makes sure that constraints which don’t in-
volve pseudo regs are fulfilled, like constants
be of a certain range, or decomposing multi-
level indirect memory access (i.e. the address
is a memref3 itself) if necessary.

The techniques it uses are heavily inspired by
reload itself, but as pre-reload works on pseudo
regs, the actual implementation can be quite a
bit simpler.

The use of pre-reload can not make totally
sure, that no invalid instructions are gener-
ated. Which register class is acceptable for one
operand can depend on which register another
operands was put in and this is only known,
once allocation finished, so in some situations
we have to give up in the allocator and assume
something. This means, that reload will still be
needed, but only extremely seldom (we once
had only about 10 reloads while building cc1
IIRC). This makes me hope that reload can be
implemented in a much simpler way than now,
for instance by simply emitting fixup instruc-
tion as invalid operands are encountered, in-
stead of first collecting all reloads of all in-
structions. Reload inheritance probably would
also not be useful anymore.

Finally ra.c holds it all together and contains
some initialization functions plus the main
loop.

4 Numbers

For comparing the performance we give some
numbers of runs of the SPEC2000 performance
test suite, with the old allocator and the new
one.

Table 8 shows the result on a 1.53 GHz Dual
3memory reference

Name Told Sold Tnew Snew

164.gzip 223 627 223 627
175.vpr 420 334 431 324
181.mcf 864 208 874 206
186.crafty 127 787 129 774
197.parser 439 410 438 411
252.eon 170 766 171 759
253.perlbmk 275 654 274 656
254.gap 205 537 201 546
256.bzip2 371 405 359 418
300.twolf 831 361 819 366

168.wupwise 294 544 290 551
171.swim 973 319 1036 299
172.mgrid 481 374 485 371
173.applu 624 337 599 351
177.mesa 233 602 229 610
179.art 1607 162 1664 156
183.equake 327 398 323 403
188.ammp 707 311 721 305
200.sixtrack 334 329 327 337
301.apsi 925 281 963 270

Figure 8: SPEC2000 results for Athlon 1800+
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Name 100 ∗ (Tnew−Told)
Told

164.gzip -1.38889 %
175.vpr -3.7037 %
176.gcc -0.465116 %
181.mcf 1.82648 %
186.crafty 3.8835 %
197.parser 1.43885 %
252.eon 5.7971 %
253.perlbmk -3.15315 %
254.gap -1.17647 %
256.bzip2 -1.5873 %
300.twolf -5.66616 %
168.wupwise 0.840336 %
171.swim 0.915751 %
172.mgrid -4.17755 %
173.applu -1.42518 %
177.mesa -5.67686 %
179.art 0.555556 %
183.equake 1.0989 %
188.ammp 0.444444 %
200.sixtrack 0.593472 %

Figure 9: Relative SPEC2000 performance on
AMD64

Athlon (Athlon 1800+). The T column shows
the runtime in seconds (smaller is better), the S
column the SPEC score (bigger is better). Note
in particular bzip2, twolf and applu, which
show some nice improvements. With the tested
version of the allocator there were also some
quite severe regressions as shown in the table.
I’ve not yet analyzed them in detail.

Table 9 shows the runtime of the SPEC2000
tests compiled with the new register allocator
compared with the old one on an AMD64 ma-
chine (i.e. with twice as much general purpose
registers as x86). As can be seen crafty and
eon regress quite much, but the potential of the
allocator can be seen in the other results.
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6 Availability

The current development version of the
register allocator is available in the
new-regalloc-branch in GCC CVS.
See

http://gcc.gnu.org/cvs.html
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