
The GCC call graph module
a framework for inter-procedural optimization

Jan Hubička
SUSEČR

jh@suse.cz

Abstract

The implementation of call graph based op-
timizations in GCC required several design
changes to the interfaces in between front-
ends and back-end parts of the compiler. We
describe in detail the new interfaces, opti-
mizations we implemented (in-lining and ba-
sic inter-procedural propagation) and the call
graph datastructure itself. We compare mem-
ory consumption, compilation time and code
quality of function at a time and unit at a time
compilation scheme. We also outline future
plans for the more advanced inter-procedural
optimizations and whole program optimiza-
tion.

1 Introduction and motivation

The implementation of function inlining in gcc
used to be a major source of dissatisfaction
among users of the compiler. Even though
inlining had been redesigned from scratch in
GCC 3.0, both inliners had serious problems.

The old inlining implementation (based on the
low-level RTL intermediate language) could
not remove several ugly artefacts in the code,
such as in-memory structures used to pass ar-
guments. It also consumed unnecessarily large
amount of memory to store function bodies in
RTL form. Memory consumption was further
increased by storing functions after inlining of

callees instead of before.

The new tree-based implementation of inlining
in GCC 3.x solved all of these problems but
unfortunately brought several new issues. For
very complex C++ programs, the new inlining
decision heuristics inlined too many functions
causing extreme memory consumption, large
compile times, and impractically bloated ap-
plications. On the other hand the default in-
line limits were way too low for C programs
such as the Linux kernel, causing many func-
tions to not be inlined at all despite the pro-
grammer having manually marked them inline.
As a result compiler became almost unusable
for some C++ programmers working on tem-
plate heavy code (such as POOMA library) and
Linux kernel developers adopted the paradigm
of using thealways_inline attribute to
override the default inlining heuristics every-
where.

In addition to these problems, GCC tradition-
ally was unable to perform “backward inlin-
ing” (inline functions used before defined),
causing noticeable loss in some benchmarks
such as SPEC2000 when compared to other
compilers.

It seemed impossible to tune the inlining
heuristics using the available set of parameters,
and thus we started to look for a more involved
solution. While looking at the problem from
a high level, it seems to be really easy to sim-



66 • GCC Developers’ Summit

ply inline all “small” functions as long as doing
so does not cause “extreme bloat.” Defining
which functions are “small” can be done easily
by limiting number of instructions in it’s body,
while defining code bloat can be done with two
parameters: first one limits growth of single
function body (since compiler algorithms are
generally not linear, and for really large func-
tions, produce both poor code and long compi-
lation times) and the second one limits growth
of overall binary size. Unfortunately without
whole program optimization (still mostly out
of reach of the current GCC framework), it is
impossible to realize the last argument, but one
still can limit the overall growth of single com-
pilation unit and get similar results.

Because implementation of such a global pa-
rameters for function inlining was very difficult
with the original organization of the compiler
we took a more difficult path and first devel-
oped an infrastructure to assist inter-procedural
optimization, to be used later when focusing on
the inlining issues.

In this paper we describe the infrastructure
and the new optimizations implemented while
working on this project. The rest of this pa-
per is organized as follows. In Section 2 we
briefly describe some problems we had to deal
with and solutions we chose for them; in Sec-
tion 3 we describe the basic data structures we
use; in Section 4 we describe the interface to
the front-end; in Section 5, the implementation
of inlining; and Section 6 contains some exper-
imental evaluation of the new algorithms.

2 Overall design and the imple-
mentation challenges

GCC compiled the majority of functions im-
mediately after parsing their bodies (only a few
functions, such as static inline functions, were
special-cased and deferred until it was obvious

that the out of line copy is needed) making im-
plementation of inter-procedural optimizations
impossible. It was necessary to reorganize the
compilation process in a way so all functions
are parsed first, then analyzed and compiled
last. We will refer to this scheme of compi-
lation asunit-at-a-timeas opposed to function-
at-a-time used by GCC originally.

The main problem that arised was that the
original GCC design made it very difficult to
change the compilation order. The back-end
has been organized as a library that allowed
the front-end to compile a specified function.
Each of the front-ends implemented its own
(in some cases remarkably complex) logic on
compiling and/or deferring a function and ex-
pected the compilation to happen immediately
after passing it to back-end (for instance, the
C++ front-end looked back into the symbols
actually output to the assembly file to figure
out which functions were referenced and had
be compiled).

Instead of implementing unit-at-a-time logic
into each individual front-end, it seemed eas-
ier to reorganize the interface in between the
front-ends and back-ends to allow implemen-
tation of the generic compilation driver taking
care of all the decisions. Since reorganizing all
the front-ends at once was a difficult task, the
new API has been made optional, and we first
implemented unit-at-a-time for the C front-end
only and later started work on reorganizing the
others.

At the moment, only the C, Objective C, C++,
Java, and F90 front-ends have been updated to
the new API, and with exception of C, each
conversion was a nontrivial task. C++ needed
to look back into assembly files to discover
what templates needs to be instantiated; Ob-
jective C gathered information about method
API during compiling the function body, and
later producing functions using that informa-



GCC Developers’ Summit 2004 • 67

tion; and F90 and Java use trees slightly dif-
ferent from the C++ family, and broke some
expectations in the new code.

Switching to unit-at-a-time by default just
seemed too radical. The main concerns that
were pointed out in the discussion about
the change were about peak memory usage
growth: in function-at-a-time mode, the func-
tion bodies can be released early once the pro-
cessing of given function finished, while unit-
at-a-time mode needs to store into memory all
functions at once. If the amount of memory oc-
cupied by the function bodies gets too large, it
may result in slow down of the compilation.

As a result of this discussion, we decided to al-
low coexistence of both schemes and added the
command line option-funit-at-a-time
to choose particular one. To date, optimization
levels -O0 and -O1 by default use function-
at-a-time compilation, while-O2 and-O3 use
unit-at-a-time. Once the front-end is converted
into the new API, both supported compila-
tion schemes (unit-at-a-time and function-at-a-
time) appear almost identical to the front-end,
and all the logic is hidden in the new compila-
tion driver implemented incgraphunit.c .

The compilation process is now organized as
follows:

1. Parsing phase: This step is fully con-
trolled by the front-end. It is up to the
front-end to decide when a given function
is “finalized” and pass it to the compila-
tion driver. After that point the front-end
is not allowed to make any modifications
on the function body or declaration, and
it is fully up to the compilation driver to
decide when (and if) the function will be
compiled.

It is probably important to note that there
is one exception the rule disallowing any
changes to the functions passed to the

back-end. The C front-end, GCC allows
the function to be first defined asextern
inline and later be re-defined with a
completely different body as an ordinary
function. In this special case, we allow
the finalization to be called twice; we sim-
ply remove all traces of the old body from
the data structures and mark the function
as uninlinable, then, when this situation is
detected.

At this stage, early analysis of finalized
functions is done as well. Certain warn-
ings (such as about unused function pa-
rameters) are output here, since it is the
last time we’ll see unneeded functions. It
is also decided whether the function is an
“entry point”—i.e., whether it is reachable
from unknown code by some way (such as
via external linkage).

The difference between function-at-a-
time and unit-at-a-time mode also lies in
the finalization code. In unit-at-a-time
mode, the function is just stored into
the data-structure and left for later anal-
ysis, while in function-at-a-time mode all
functions are fully analyzed immediately,
the control flow graph is incrementally
built, and most functions are compiled—
the only exceptions being static inline, ex-
tern inline, comdat,1 and nested functions.
These are just stored into the call-graph
and compiled only when they turn out to
be necessary (i.e., when symbol is output
into the assembly file).

A similar mechanism is implemented for
file-scope variables. In unit-at-a-time,
all variables are stored into variable pool
data-structure, while in function-at-a-time
mode, all variables are output to the as-
sembly file immediately.

In function-at-a-time mode compilation

1functions that may appear in multiple units and are
linked into a single function.



68 • GCC Developers’ Summit

terminates once parsing is finished, while
in unit-at-a-time it goes into following
stages:

2. Analysis phase: The call-graph is built
and local optimization information is
gathered at this stage. To reduce the
amount of work done, the call-graph is
built incrementally and only functions
reachable from the entry points are ana-
lyzed. Since we do not handle any depen-
dency edges on data-structures, the reach-
able data-structures are immediately out-
put into the assembly file and further func-
tions/data structures referenced by them
are added into the work lists via a call-
back from back-end function, outputting
a symbol reference into the assembly file.

The local analysis used to drive inter-
procedural optimizations is also supposed
to happen here. At the moment, the size
of function body is estimated for later use
in inlining.

3. Optimization phase: Several optimiza-
tions are performed on the call-graph it-
self in sequence. At the moment follow-
ing optimizations are done:

(a) Reclaiming of memory occupied by
the unused (i.e., unanalyzed) func-
tions and data-structures.

(b) Local function discovery: Alocal
function is a function that is not an
entry point and whose address has
never been taken. We mark these
functions by special flag, since it
is possible to perform optimizations
interfering with the target ABI on
such functions. For instance on i386
we now use register-passing con-
ventions, but there are considerably
more possibilities for target-specific
optimization here. (In PIC compi-
lation, one can, for instance, avoid

recomputing of global offset table
pointers in the prologues of local
functions, and propagate the compu-
tation into callers.)

(c) Construction of inlining plan: We
make all the inlining decisions in ad-
vance and store them in call graph as
a so-called “inlining plan.” See Sec-
tion 5 for details.

(d) Another pass of unreachable func-
tion removal: in some cases, a func-
tion might be reachable only via a
call in an extern inline function that
was never inlined. Since the body
of the extern inline function is never
output, it is possible to remove all
such functions, too. This scenario is
very common for C++ programs.

Note that it is very desirable not to touch
the function bodies at this stage. In real
whole program optimization, the func-
tions are parsed and stored into “object
files” containing intermediate representa-
tion of the program. The intra-procedural
optimization phase executed in linker then
should not need to load everything into
memory at once and instead use the data
files as a database reading the call-graph
information first and using the function
bodies just later in the compilation phase.

4. Expansion: We proceed in reverse DFS
order on functions that are still present in
the call-graph, applying inter-procedural
optimizations such as inlining to the func-
tions, and finally leaving them to the back-
end to do the actual optimization and
compilation.

Function reordering allows more reli-
able propagation of information from the
callee code generation into the caller. For
instance, it is possible to generate a bet-
ter call sequence when the callee’s pre-
ferred stack frame boundary is known.



GCC Developers’ Summit 2004 • 69

Such function ordering would permit im-
plementation of more interesting opti-
mizations too (for instance simple inter-
procedural register allocation). On the
other hand, it makes it almost impossi-
ble to avoid compilation of some function
when its call has been optimized out. At
the moment we make no attempts to solve
this issue; however, in the future we may
want to do early optimization during the
analysis stage to catch most of these cases.

It also would be also desirable to defer
output of global variables to this stage and
output only the variables that are still re-
ferred by functions after the optimization.
Implementing this feature is easy and we
hope to do so in the near future.

3 Data-structures

Most of the code in the compilation driver actu-
ally manipulates only two data structures, that
is, the call-graph and the variable pool.

3.1 The call-graph

Thecall-graphconsist of nodes and edges rep-
resented via linked lists. Each function (exter-
nal or not) corresponds to the unique node and
each direct call has corresponding edge from
caller to the callee.

The mapping from declarations to call-graph
nodes is done using an hash table based on the
declarations’DECL_UID, so it is essential that
the frontend use single declaration ID for each
function or variable. The call-graph nodes are
created lazily using thecgraph_node func-
tion, when an unknown declaration is called.

When the call-graph is built, there is one edge
for each direct call. The indirect calls are not
represented at a moment. We simply mark each

function with address taken as externally visi-
ble function. Optimizers then have to expect
conservatively that each indirect call and/or
call of unknown function might in turn call
some of the entry points. The entry points
are merged via flagneeded in the call-graph
node.

Finally there is a work list used to maintain
nodes that are reachable from the entry points
and thus needs to be analyzed or output into the
file.

3.2 Data-structures for inter-procedural infor-
mation

Call-graph is place to store data needed
for inter-procedural optimization. All data-
structures are divided into three components:
local_info that is produced while analyz-
ing the function,global_info that is result
of global walking of the call-graph on the end
of compilation andrtl_info used by RTL
back-end to propagate data from already com-
piled functions to their callers.

The division has been made to make it possible
to reduce memory usage in the future. Each of
the field has different lifetimes and thus they
don’t necessarily need to be allocated all the
time. At the moment the data-structures are
small and thus all allocated at once with the
call graph nodes, but thecgraph_global_
info , cgraph_local_info , cgraph_
rtl_info accessor functions shall be used to
access the data. These functions already con-
tain sanity checks that enforce the lifetimes of
the individual data structures.

In the contrast, there is structurefunction
allocated for each parsed function body tradi-
tionally used to store related information by
many other parts of the compiler. This struc-
ture has no such organization and it consumes
up to 25% of overall memory for some C++
programs. We hope to improve the situation



70 • GCC Developers’ Summit

by reorganizingstruct function simi-
lar way and moving to the call-graph nodes
some of the data currently held instruct
function , removing redundancies on where
the information shall be stored.

3.3 The varpool data structure

In order to allow elimination of unused static
data within the backend, we modified the in-
terface to the output data-structures too. The
varpool module is used to maintain variables in
similar manner as call-graph is used for func-
tions. At the moment it is implemented as
a simple hash table containing entries for all
global data-structures, and a worklist maintain-
ing a list of variables that need to be output into
assembly file. No dependencies or references
are represented explicitly.

4 Front-end API

An important part of the new compilation
driver design is the API to front-end. We tried
hard to make it as easy to use as possible, how-
ever practice has shown that it is not always
trivial to update existing front-ends to the new
philosophy. Hopefully the API will still be nat-
ural to use in the new code.

All functions the front-end programmer shall
be interested in are:

cgraph_finalize_function shall be called
once front-end has parsed whole body of
function and it is certain that the function
body nor the declaration will change.

(As mentioned above, there is one ex-
ception needed for implementing GCC’s
extern inline functions, but it
should not be used by new code.)

cgraph_varpool_finalize_variable has the

same behavior but is used for file scope
variables.

cgraph_finalize_compilation_unit shall be
called called once parsing of compilation
unit is finalized and trees representing
it will no longer be changed by the
front-end.

In unit-at-a-time mode, call-graph con-
struction and local function analysis takes
place here. Bodies of unreachable func-
tions are released to conserve memory us-
age.

The compilation unit in this point of view
should be compilation unit as defined by
the language—for instance the C front-
end allows multiple compilation units to
be parsed at once and it should call this
function each time parsing is done, in or-
der to save memory. This is not what
happens currently because the C front-end
does global static variable renaming pass
at the very end of compilation. As a result,
unnecessary and duplicate function bodies
are maintained in memory up to very end
of the parsing process.

Modifying the C front-end to use this
scheme is not an easy task. Merging of
C compilation units together involve a lot
of C language specific behavior and we
need to consider whether it is feasible to
implement that logic in the generic pass
or through a some simple set of front-end
hooks.

cgraph_optimize performs inter-procedural
analysis and compile functions in unit-
at-a-time mode (in function-at-a-time
this function does nothing except for
producing debug dumps). Front-end
shall call this function at the very end
of compilation, after releasing all those
internal data-structures that are not passed
to the back-end.



GCC Developers’ Summit 2004 • 71

cgraph_mark_needed_nodecan be used
when a function is referenced by some
hidden way (for instance if it is marked
by attributeused , which usually means
that it is called in inline assembly code).
The call-graph data structure is updated
in a way that function is marked as entry
point and thus it is never optimized as
local function and always compiled.

cgraph_varpool_mark_needed_node
has a similar meaning as function
cgraph_mark_needed_node , but is
used for variables.

To overcome problems in the front-end specific
representation of trees, we had to implement
two callbacks that allow a front-end to define
front-end specific expansion of trees into RTL.
We plan to eliminate these completely once the
work on tree-ssa branch is finished.

analyze_expr callback This function should
lower tree nodes not understood by
generic code into understandable ones or,
alternatively, should mark referenced call-
graph and varpool nodes.

expand_function callback is used to expand
the function into RTL form in front-end
specific way. The front-end should not
make any assumptions about when this
function can be called. Existence of this
hook is also used as a check on whether
front-end supports unit-at-a-time API.

5 Inlining Heuristics

Only non-trivial inter-procedural optimization
implemented at a moment is inlining we de-
scribe in this section. The inliner implementa-
tion can be used as an example how other inter-
procedural optimizers can be implemented on
the on the top of the new infrastructure, so we
will describe it in greater detail.

5.0.1 Inlining plans

The function inlining information is decided in
advance (in the optimization phase) and main-
tained in the call-graph in the so called inlin-
ing plan until the function is optimized. Once
a function body is physically inlined into an-
other, the callgraph data-structure is updated
to reflect new program structure. This orga-
nization is critical to make it possible to save
parsed function bodies into disk and make all
inter-procedural optimizations without actually
touhing the bodies and having them to resist in
memory all at once.

The inlining decisions are reflected in the call-
graph as follows: When the heuristics decide to
inline given call-graph edge, the calle’s node is
cloned to represent the new function copy that
will be later produced by inliner (so each in-
lined call of given function gets unique clone
node and all the clones are linked together
via linked list). Each edge has an "inline_
failed " field. When the field is set to NULL,
the call will be inlined. When it is non-NULL
it contains an reason why inlining wasn’t per-
formed, that might be eventually output by the
inliner when-Winline is specified.

We originally didn’t clone the nodes and sim-
ply had a flag in each edge specifying whether
the given call shall be inlined. This was found
soon to have many limitations. For example,
it is impossible to represent inline plans that
are nottransitive(i.e., once call of functionB
in offline copy of functionA is inlined, each
inline copy of functionA must have the func-
tion B inlined as well). Non-transitive inlining
plans are needed in order to let the programmer
claim that all direct and indirect callees shall be
inlined recursively; experience has shown that
this kind of control is useful in template-heavy
C++ numeric code.

Reorganizing the code to new scheme also



72 • GCC Developers’ Summit

turned out to simplify significantly the esti-
mates of overall code size growth caused by
inlining, and allowed to release function body
as soon as all of its inline copies are produced.

5.0.2 Profitability estimates

To make good inlining decisions, the profitabil-
ity of inlining a given call must be estimated.
Ideally, one might take into account the ex-
pected time spent in callee and compute how
large relative speedup will elimination of the
call overhead is. It is also desirable to take into
account the new optimization possibilities and
weight it with the expected code size growth.
See for instance [1] for more discussion on the
topic.

With current very high level and partly front-
end specific intermediate representation it is
difficult to do such a complex analysis and
the profitability analysis actually represent the
weakest spot of our implementation. At a mo-
ment we simply compute estimated function
body size in front-end specific way by walk-
ing the tree representation and summing cost
of the nodes. The majority of nodes has a
cost of 1 with exception of a few nodes that
are known to have zero cost (such as lexical
scope regions or__builtin_constant_p
calls) and a few others that are known to be ex-
pensive (such as division or function call) and
are assigned a cost of 10. This implementa-
tion is still a noticeable improvement compared
to previous implementations that were merely
counting number of statements in the source
and completely ignored the different complex-
ities of individual constructs.

The cost of inlining given call is estimated
as cost of increasing the callers body cost by
callees cost minus 10 (eliminating the call).
Our objective is to inline as many function calls
before reaching given growth limits.

Toggether with developers from Apple we are
working towards a better implementation of
this analysis based on tree-ssa representation.
This work is being done tree-profiling branch
and will take into account the runtime call fre-
quencies computed from the profile, allowing
the compiler to perform a realistic estimate the
costs of individual calls. We also plan to imple-
ment a partial specialization pass on functions
that will notice situations where function body
can be significantly simplified when some of its
arguments are known. This project is however
still far from being finished.

5.0.3 Limiting parameters

As discussed earlier, we provide set of param-
eters to avoid too extreme amount of inlining.
The final set of parameters are just slightly
more complicated than ones outlined in the in-
troduction section:

max-inline-insns-single sets the maximum
number of instructions (counted in GCC’s
internal representation) in a single func-
tion that the tree inliner will consider for
inlining. This only affects functions de-
clared inline and methods implemented in
a class declaration (C++). The default
value is 500.

max-inline-insns-auto sets limit on esti-
mated size of inline candidates when
-finline-functions (included in
-O3 ) is used. The default value is 120.

large-function-insns is a limit that
specifies which functions are con-
sidered to be “large”: for func-
tions greater than this limit, in-
lining is constrained by --param
large-function-growth . This
parameter is useful primarily to avoid



GCC Developers’ Summit 2004 • 73

extreme compilation time caused by non-
linear algorithms used by the back-end.
The default value is 3000.

large-function-growth specifies maximal
growth of large function caused by
inlining in percent. The default value is
200.

inline-unit-growth specifies maximal overall
growth of the compilation unit caused by
inlining. This parameter is ignored when
-funit-at-a-time is not used. The
default value is 150.

5.0.4 Global inlining heuristics

Given the rules established by these five pa-
rameters, inlining decisions are made in three
passes. In the first pass all function calls
marked with thealways_inline attribute
are inlined, so that other decisions cannot in-
terfere with it.

In the second pass inlining of small functions is
performed; all function candidates are put into
a priority heap ordered by the estimated costs
of inlining the function into all its callers and
then they are inlined in priority order, updating
the costs of other enqueued candidates until the
heap is empty or the overall unit growth param-
eters reached.

This algorithm (often described as knapsack
style, see [2]) seem to perform better than sim-
ple top-down and bottom-up heuristics result-
ing in more function calls to be inlined with-
out breaking the same inline limits discussed
above.

In the third pass all functions that are still
called just once are inlined unless the callee
body become too large.

Finally the fourth pass does so-called “recur-
sive inlining.” When the function contains re-

cursive calls and its body is called, the calls
are inlined up to recursion depth computed in
a way so function reach size specified by pa-
rameter. This optimization has similar effect
as loop unrolling.

5.0.5 Incremental inlining heuristics

The global inlining heuristics can not be used
in function-at-a-time mode and thus there is an
alternative implementation of simple bottom
up inlining heuristics. Most of the code (check-
ing of limits and updating call-graph) is shared
in between the implementations and thus the
implementation is pretty straight forward.

The major problem of this heuristics appears
to be in fact that the overall compilation unit
growth argument is ignored. In some ex-
treme C++ test cases (such as those based on
POOMA library) the compiler now compiles
faster at-O2 compilation level compared to
-O1 .

6 Experimental Results

Evaluating the effectiveness of new infrastruc-
ture is difficult task. The benefits (and losses)
vary greatly together with the coding style of
the tested application. Very good results can
be measured in the template heavy C++ code,
such as the DLV application or POOMA li-
brary that we use as a benchmark suite. The
table 1 summarizes the results of DLV bench-
mark suite evolving over various GCC releases
and it is easy to notice the degradation in per-
formance in GCC 3.0, as well as a reduction
of code size caused by decreasing inline limits
to avoid compile time problems as mentioned
earlier. This problem remained apparent un-
til GCC 3.3 despite quite serious attempts to
tune the heuristics. GCC 3.4 behaves quite
well in both function-at-a-time and unit-at-a-



74 • GCC Developers’ Summit

time heuristics, but the code size has increased
noticeably. For this particular benchmark it is
possible to reduce the inlining limits somewhat
and get code sizes smaller than GCC 2.95 with-
out considerable performance regressions; re-
ducing the limits, however, hurts performance
in other benchmarks signalizing that the prof-
itability analysis needs more work. Unfortu-
nately it is no longer possible to present GCC
3.4 numbers with the old heuristics, but the ini-
tial tests did already show benefits similar as
ones compared to GCC 3.3 so we believe that
majority of the improvements actually come
from inlining in this particular case.

The author evaluated number of template
heavy test cases while working on new imple-
mentation, and the benefits can be virtually in-
finite scaling with complexity of the code. For
test case based on POOMA library, compila-
tion times went down from 25 minutes to 1
minute with noticeable improvements in exe-
cution time too.

On the other hand, the C and Fortran bench-
marks shows a much more moderate improve-
ment. Table 3 shows benchmarks made on
AMD Opteron chip in 32bit and 64bit mode.
While majority of the tests improve, the bene-
fits are less noticeable. The good news, how-
ever, are that the unit-at-a-time reduce code
size almost consistently on the-O2 level of op-
timization. On the other hand the-O3 scores
demonstrate that backward inlining can cause
code size growth without major changes in the
performance.

By comparing the 64-bit and 32-bit scores, one
also can notice the benefits of register passing
conventions.

One area where author was hoping for consid-
erable improvement is performance of desktop
applications. It is difficult to present the bench-
marks of the GUI application but the simple
test of compiling x86-64 KDE and Mozilla

source gave savings of 7.4% and 6.6% respec-
tively in the overall size of stripped binaries,
and a partial i386 Open-Office build gave 22%
savings. These savings ought to bring a no-
ticeable improvement in execution time and re-
duction of memory usage too. In addition the
performance of code shall be improved simi-
lar way as in the DLV application benchmark
presented here.

It remains to discuss the memory usage of the
compiler. Again it is not difficult to present
extreme improvements (for example, compil-
ing the POOMA library only requires 2% of
the memory) as well as extreme regressions: a
huge compilation unit consisting of small but
uninlinable functions will result in arbitrarily
high unit-at-a-time peak memory usage, with-
out increasing peak usage in function-at-a-time
mode.

Real world application however show that
compilation units usually require less memory,
both because they are not very large and also
because the lifetime data structures used by the
front-end in unit-at-a-time mode does not over-
lap with the lifetime of data structures used by
backend; in addition, unneeded functions and
data-structures are released early.

Table 2 shows peak GGC memory usage while
compiling some of relatively large source files.
The numbers were obtained by compiling
with --param ggc-min-expand=0
--param ggc-min-heapsize=2048
-Q and examining the GGC debug output
for largest memory usage after the collection.
The generate.ii is a large test case of
template heavy code, whilecombine.c is
one of largest source files of GCC. The graph
of memory usage in unit-at-a-time of the
C++ testcase is almost flat demonstrating that
the pass releasing unneeded function bodies
release enough memory so the back-end no
longer increase the peak. For the C test case



GCC Developers’ Summit 2004 • 75

there are small regression at-O1 and-O2 but
author would hope that these won’t prevent
unit-at-a-time from being enabled by default
in the future.

7 Contributors

The project would be impossible without fol-
lowing contributions: Steven Bosscher reorga-
nized f90 front-end, reviewed early implemen-
tations of the inlining code and made a number
of cleanups. Richard Günther provided a lot
of feedback about POOMA library issues. He
also implemented patch for “leafify ” func-
tion attribute that brought major motivation for
reorganization of the inlining plans representa-
tion. Richard Henderson reviewed most of the
call-graph code. Gerald Pfeifer provided the
DLV benchmark that has turned out to be ex-
tremely useful to tune the heuristics and gave a
lot of useful feedback. Jeff Sturm revamped the
Java front-end to cgraph code. Mark Mitchell
helped to choose feasible way on how to re-
organize C++ compiler, reviewed the changes
and helped to solve some of issues. Zack Wein-
berg reorganized the code to not use hash tables
based on assembler names.

A number of SUSE developers (mainly An-
dreas Jaeger, Andi Kleen and Michael Matz)
helped to test GCC on SUSE distribution build
and analyzed/fixed many of compatibility is-
sues and implementation defects so the imple-
mentation was ready for production use before
the offical GCC 3.4 release.

Author would also like to thank to Paolo
Bonzini and John W. Lockhart who helped to
proofread the paper.

References

[1] Towards Better Inlining Decisions Us-
ing Inlining Trials (1994), Jeffrey Dean,

Craig Chambers

[2] A Comparative Study of Static and
Profile-Based Heuristics for Inlining
(2000), Matthew Arnold, Stephen Fink,
Vivek Sarkar, Peter F. Sweeney



76 • GCC Developers’ Summit

Table 1: Speedup in the DLV Benchmark relative GCC 2.95
Execution times in second and relative comparisons to GCC 2.95, smaller is better.

benchmark GCC 2.95 3.0.4 3.3.2 3.4 -fno-unit. . . 3.4 -funit-at. . .
STRATCOMP1-ALL 2.45s24.92s 1017.00% 4.68s 191.00% 8.31s 339.00% 2.58s 105.00%
STRATCOMP-770.2-Q 0.49s 0.57s 116.00% 1.22s 248.00% 0.47s 95.00% 0.45s 91.00%
2QBF1 10.92s13.96s 127.00%28.68s 262.00%11.06s 101.00% 9.33s 85.00%
PRIMEIMPL2 7.52s 8.75s 116.00%43.60s 579.00% 6.27s 83.00% 6.00s 79.00%
3COL-SIMPLEX1 4.68s 4.97s 106.00%11.13s 237.00% 4.56s 97.00% 4.34s 92.00%
3COL-RANDOM1 6.66s 8.15s 122.00%38.14s 572.00% 5.95s 89.00% 5.86s 87.00%
HP-RANDOM1 4.93s 5.72s 116.00%18.44s 374.00% 5.23s 106.00% 4.44s 90.00%
HAMCYCLE-FREE 0.80s 1.12s 140.00% 4.96s 620.00% 1.03s 128.00% 0.72s 90.00%
DECOMP2 8.44s 9.59s 113.00%33.91s 401.00% 8.53s 101.00% 7.87s 93.00%
BW-P5-nopush 4.45s 4.85s 108.00%12.90s 289.00% 4.25s 95.00% 4.19s 94.00%
BW-P5-pushbin 3.79s 4.05s 106.00%12.61s 332.00% 3.44s 90.00% 3.40s 89.00%
BW-P5-nopushbin 1.21s 1.31s 108.00% 4.07s 336.00% 1.13s 93.00% 1.09s 90.00%
HANOI-Towers 2.05s 2.19s 106.00% 6.21s 302.00% 1.94s 94.00% 1.82s 88.00%
RAMSEY 5.34s 5.69s 106.00%16.69s 312.00% 4.83s 90.00% 4.58s 85.00%
CRISTAL 5.30s 5.91s 111.00%12.67s 239.00% 5.14s 96.00% 4.75s 89.00%
21-QUEENS 6.35s 7.31s 115.00%40.15s 632.00% 5.09s 80.00% 4.86s 76.00%
MSTDir[V=13,A=40] 12.58s14.46s 114.00%41.77s 332.00% 9.14s 72.00% 8.60s 68.00%
MSTDir[V=15,A=40] 12.62s14.49s 114.00%41.44s 328.00% 9.15s 72.00% 8.53s 67.00%
STUndir[V=13,A=40] 6.47s 7.57s 117.00%25.48s 393.00% 4.96s 76.00% 4.61s 71.00%
TIMETABLING 7.08s 7.37s 104.00%18.21s 257.00% 6.30s 88.00% 5.90s 83.00%
compilation time 2m42s2m53s 106.7%2m47s 103% 2m9s 79.6%2m28s 91.3%
Code size 1251k 622k 49.7% 1562k 124.8%1808k 144.5%1628k 130.1%

test optimization level function-at-a-time unit-at-a-time savings
generate.ii -O0 33563K 32606K 2.9%
generate.ii -O1 33462K 32606K 2.9%
generate.ii -O2 43296K 33239K 30%
generate.ii -O3 >55077K 33411K >64%
combine.c -O0 3655K 3625K 1.1%
combine.c -O1 3199K 3531K -11%
combine.c -O2 3450K 3609K -4.0%
combine.c -O3 6245K 4086K 52%

Table 2: Peak GGC memory usage



GCC Developers’ Summit 2004 • 77

Table 3: 64-bit SPECint 2000 -fnon-unit-at-a-time compared to -funit-at-a-time
Performance (relative speedup in percent, bigger is better):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg
-O2 -0.89 1.22 0.72 0.00 0.42 0.35 3.51 4.84 -1.19 3.27 0.12 -4.360.24
-O2 -m32 -0.71 4.02 0.21 -0.19 -1.60 0.15 10.39 1.64 -1.82 -0.19 0.14 -0.610.86
-O3 -0.52 4.08 0.93 0.00 0.36 0.34 5.27 0.00 0.50 -0.50 -0.38 -4.270.11
-O3 -m32 -0.50 7.77 -1.93 0.00 -1.89 -0.71 6.36 0.96 0.26 1.52 -0.28 -1.530.61
-O3 + profile -1.78 3.91 0.19 0.00 -0.37 -0.35 3.84 3.91 -6.37 -1.61 0.49 -0.740.00
-O3 -m32 + profile -0.96 10.04 0.52 0.18 0.10 0.42 10.16 2.78 -0.89 -0.63 0.95 2.122.04

File size (relative increase of the size of stripped binaries in percent):

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-O2 -20.42 -5.62 -2.08 0.00 -0.02 0.00 -8.58 -1.08 -0.10 -1.41 0.00 0.46-2.63
-O2 -m32 -19.93 -2.66 -2.47 0.00 0.10 -0.03 -7.98 -0.89 -0.09 -0.87 0.00 -0.05-2.44
-O3 -13.79 -1.47 5.14 0.00 3.68 4.17 -3.89 4.45 2.22 1.13 12.36 5.232.60
-O3 -m32 -12.72 3.62 5.48 0.00 4.33 5.28 -3.66 4.87 2.81 1.01 18.79 7.483.24
-O3 + profile -14.41 -1.33 5.18 0.00 2.35 4.12 -3.60 4.95 2.58 0.72 13.23 4.832.62
-O4 -m32 + profile -12.30 3.66 5.66 0.00 4.34 5.43 -3.68 5.21 2.99 1.02 18.29 5.793.29

Performance (relative speedup in percent, bigger is better):

options wupwise swim mgrid applu mesa art equake ammp apsitotal
-O2 0.00 0.14 0.00 0.00 -0.70 0.32 -0.13 0.00 0.000.00
-O2 -m32 -0.13 0.00 0.00 0.00 -1.36 1.48 0.72 0.00 0.000.17
-O3 0.00 0.00 0.00 0.17 -3.51 0.63 4.87 0.00 0.000.14
-O3 -m32 1.36 0.29 -0.18 0.00 4.67 1.89 3.75 0.00 0.001.02
-O3 + profile feedback 0.11 0.43 0.00 0.00 3.35 1.92 1.74 0.00 0.000.86
-O3 -m32 + profile feedback 0.00 0.00 0.18 0.00 7.36 2.80 3.01 0.00 0.001.19

File size (relative increase of the size of stripped binaries in percent):

options wupwise swim mgrid applu mesa art equake ammp apsitotal
-O2 0.00 0.00 0.00 0.00 -1.73 0.00 0.00 0.00 0.00-0.47
-O2 -m32 0.00 0.00 0.00 0.00 -1.32 0.00 0.24 0.00 0.00-0.35
-O3 0.00 0.00 0.00 0.00 -0.23 0.00 0.85 0.00 0.00-0.06
-O3 -m32 0.00 0.00 0.00 0.00 -0.24 1.35 5.57 0.00 0.000.02
-O3 + profile feedback 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.00-0.07
-O3 -m32 + profile feedback 0.00 0.00 0.00 0.00 -0.21 1.43 5.16 0.00 0.000.03



78 • GCC Developers’ Summit


